

MISEL - a multiband event-based intelligent vision system

<u>Jacek Flak</u>¹, Karl-Magnus Persson¹, Mika Laiho², Victor Brea³, Hannes Dahlberg⁴, and Stefanie Stoll⁵

¹ VTT Technical Research Centre of Finland Ltd.
² Kovilta Oy
³ University of Santiago de Compostela
⁴ Lund University
⁵ AMO GmbH

Outline

- Project basic facts
- Objectives
- System approach overview
- Cellular/cerebellar processor chip
- Cortical processor chip
- Beyond CMOS technology integration
 - CQD-based NIR photodetector
 - Ferroelectric memory

Project basic fact

Consortium of 9 partners from 6 European countries:

- VTT, Kovilta (Finland)
- ULUND (Sweden)
- TUL (Poland)
- AMO, BUW, Fraunhofer (Germany)
- LNE (France)
- USC (Spain)

https://www.misel-project.eu/

Workshop 10

Project objectives

Develop **standalone multiband vision system** for advanced situation awareness, which would demonstrate the advantages of the MISEL holistic sensing and computing approach over the conventional approaches.

- 1. Demonstrate adaptive multiband (VIS-to-NIR) pixels for the camera.
- 2. Demonstrate in-sensor computing for data reduction and adaptation.
- 3. Demonstrate FeRAM monolithically integrated on top of silicon computing layer.
- 4. Explore and implement the MISEL holistic sensing-computing approach.
- 5. Demonstrate the competitiveness of neuromorphic computing.

System approach overview

Workshop 10

2025 Symposium on VLSI Technology and Circuits

Accumulator Pixel Array classifie controllers ADC **GS** memory FPN memory ow level Spatial Spatial & temporal filters Spatial Cellular NN scaler **Temporal** pyramid 1/0Temporal classifier

kovilta

- Sensing and computing on the same chip
 - Pixel array produces data at a high frame rate >1kfps
 - On-chip compute has access to the high fps data without bottlenecks associated with off-chip data transfer
- The front-end on-chip compute and memories are pitch matched to the pixel column
 - Further compute is carried out with computing accelerators at chip periphery
- Implemented in 180nm CMOS.
 - The chip dimensions are 27x13mm2.
 - The system-on-chip mixed-mode design has ~100 million transistors

- Cellular/cerebellar processor simultaneously provides
 - processing results for fast reaction
 - accumulated data for further ROI analysis with the cortical processor chip
- Accumulated data bus transfers lowered frame rate data based on requests from cortical chip
 - Accumulator collects and combines 32x32 ROI data from multiple frames and provides the data to the cortical processor.
- Fast data bus is a 64-bit general purpose bus with access to all data processing units on chip

- The pixels are drawn in a group of 2x2 Si pixels accompanied with an additional readout circuit for postprocessed QD-Graphene photodetectors
 - Every 2x2 pixel group has a via to postprocessing steps carried out after the CMOS
 - The dimensions of the 2x2 pixel group are 20x20um2
- Postprocessed CQDs are connected between the via in the 2x2 pixel group and a column-level via
- There are a total of 640x480 Si pixels and 320x240 colloidal quantum dot (CQD) detector readout circuits (ROIC) on the chip.
- The pixels have an active logarithmic (not integrating) sensor front end so that the pixel value is available for reading at any time
 - The negative feedback provided by the amplifier of the pixel front-end regulates the voltage at the cathode of the photodiode so that it remains at a nearly constant voltage.
- The output of the feedback amplifier is read out of the pixel array

Workshop 10

2025 Symposium on VLSI Technology and Circuits

VQLO

- The outputs from the pixels are converted to events and intensity image with per-column event generation circuits.
 - row-wise reading out pixel-values and using ADCs to convert the difference of previous pixel values
- On-chip FPN compensation of the logarithmic sensors is with values computed from image statistics
- Supports a broad range of temporal and spatial scales to enable analysis over a wide range of object sizes and speeds of motion
 - circuitry for spatial and temporal image processing for feature and object segmentation, classification and tracking
 - A temporal event pyramid optical flow generates and stores event planes at different timescales and computes motion from those

- Spatial computing is carried out to extract for example FAST corners that can be used for tracking
- There are two hyperdimensional associative processors on chip.
 - One is for object classification (64x3600 CAM cells)
 - One is for motion pattern classification (192x3600 CAM cells)
- There is a 320x240 sized image-parallel cellular neural network
 - programmable neighborhood connectivity kernels for ROI extraction and tracking
 - 21 local memories per cell for storing intermediate results
- Output data handling is capable of providing ROI data from certain part of the image and scale the data.

- The chip has nine low level custom controllers (LLC) that are dedicated to control different parts of the chip.
 - LLCs operate at 100MHz and have 2k x 16b program memory
- RISC-V runs at 100MHz
 - Capable of initiating and halting the operation of the LLCs
 - Has access to processed data
- 640x480 images were captured with Si diodes (sensing, ADC, readout) at > 1kfps
 - intensity image data and temporal difference event data were captured
 - on-chip FPN compensation was applied
- We are now bringing up the temporal pyramid/optical flow, spatial compute, tracking, classification, ROI and accumulation operations.

Log intensity image

Temporal difference events

Chip carrier board

Measurement board

Workshop 10

Cortical processor chip

• Cortical processor - block diagram

- Cortical processor chip micrograph
 - 180nm CMOS, 7x11mm2
 - Data path
 - CNN with CMOS or CNN with CMOS + FeFET with 23x23 KPs each with 3x3 multipliers
 - HDC 2048 vectors, 32 input and 32 output channels
 - Control
 - NEORV32 RISC-V

Workshop 10

2025 Symposium on VLSI Technology and Circuits

- Biased Metal Insulator Graphene (MIG) Diodes create a tunnel current through TiO2
- QD absorption layer adds electrons to the Graphene when illuminated resulting in a Photocurrent
- QDs can be specialized to absorb infrared light
- Advantages: ability to be integrated on top of CMOS chip as well low dark currents

Workshop 10

2025 Symposium on VLSI Technology and Circuits

Workshop 10

2025 Symposium on VLSI Technology and Circuits

Beyond CMOS - ferroelectric memory VTT

6" wafer 2·P_R

mapping

- electrode
 - Targeting thin-film FeFET integration; semiconductive oxide, carbon nanotube or 2D material
- Very good switching stability
 - Uniform distribution
 - Distinct analogue states
 - Low switching fatigue
- BEOL with VTT designed ASIC
 - Ultra-energy-efficient CIM for AI

Characterized Polarization

Tight wafer distribution of analogue states

2025 Symposium on VLSI Technology and Circuits

20

10

Slide 15

Workshop 10

Acknowledgments

Horizon 2020 European Union Funding for Research & Innovation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 101016734

Workshop 10

2025 Symposium on VLSI Technology and Circuits